17. TIME AND DISTANCE

IMPORTANT FACTS AND FORMULA

1. Speed $=\binom{$ Distance }{\hline Time $)}$, Time $=\left(\frac{\text { Distance }}{\text { Speed }}\right)$, Distance $=($ Speed $*$ Time $)$
2. $\mathrm{xkm} / \mathrm{hr}=\mathrm{x} * \underline{5}$

18
3. $\mathrm{x} \mathrm{m} / \mathrm{sec}=(\mathrm{x} * 18 / 5) \mathrm{km} / \mathrm{hr}$
4. If the ratio of the speeds of A and B is $a: b$, then the ratio of the times taken by them to cover the same distance is $\underline{1}: \underline{1}$

$$
\mathrm{a} \quad \mathrm{~b}
$$

or b:a.
5. Suppose a man covers a certain distance at $\mathrm{x} \mathrm{km} / \mathrm{hr}$ and an equal distance at $\mathrm{y} \mathrm{km} / \mathrm{hr}$. Then, the average speed during the whole journey is $\frac{2 x y}{x+y} \mathrm{~km} / \mathrm{hr}$.

SOLVED EXAMPLES

Ex. 1. How many minutes does Aditya take to cover a distance of $\mathbf{4 0 0} \mathbf{m}$, if he runs at a speed of $20 \mathrm{~km} / \mathrm{hr}$?
Sol. Aditya's speed $=20 \mathrm{~km} / \mathrm{hr}=\left\{\begin{array}{c}20 * \underline{5} \\ 18\end{array}\right\} \mathrm{m} / \mathrm{sec}=\underline{0} \underline{50} \mathrm{~m} / \mathrm{sec}$

$$
18>9
$$

\therefore Time taken to cover $400 \mathrm{~m}=\{400 * \underline{9}\} \sec =72 \mathrm{sec}=\underline{1} \underline{12} \mathrm{~min} 1 \underline{1} \mathrm{~min}$.

Ex. 2. A cyclist covers a distnce of 750 m in 2 min 30 sec . What is the speed in $\mathrm{km} / \mathrm{hr}$ of the cyclist?
Sol. Speed $=\left\{\frac{750}{150}\right\} \mathrm{m} / \mathrm{sec}=5 \mathrm{~m} / \mathrm{sec}=\left\{5 * \frac{18}{5}\right\} \mathrm{km} / \mathrm{hr}=18 \mathrm{~km} / \mathrm{hr}$
Ex. 3. A dog takes 4 leaps for every 5 leaps of a hare but 3 leaps of a dog are equal to 4 leaps of the hare. Compare their speeds.
Sol. Let the distance covered in 1 leap of the dog be x and that covered in 1 leap of the hare by y.

Then, $3 x=4 y=>x=\frac{4}{3} y \Rightarrow 4 x=\frac{16}{3} y$.
\therefore Ratio of speeds of dog and hare $=$ Ratio of distances covered by them in the same time

$$
=4 x: 5 y=\frac{16}{3} y: 5 y=\frac{16}{3}: 5=16: 15
$$

Ex. 4. While covering a distance of 24 km , a man noticed that after walking for 1
hour and 40 minutes, the distance covered by him was $\underline{5}$ of the remaining distance.
What was his speed in metres per second?

7

Sol. Let the speed be $\mathrm{x} \mathrm{km} / \mathrm{hr}$.
Then, distance covered in 1 hr .40 min . i.e., $1 \underline{2} \mathrm{hrs}=\underline{5 \mathrm{x}} \mathrm{km}$
Remaining distance $=\{24-\underline{5 x}\} \mathrm{km}$.

$$
3
$$

$$
\begin{aligned}
\therefore \frac{5 x}{3}=\frac{5}{7}\left\{24-\frac{5 x}{3}\right\} & \Leftrightarrow \frac{5 x}{3}=\frac{5}{7}\left\{\frac{72-5 x}{3}\right\} \Leftrightarrow 7 x=72-5 x \\
& \Leftrightarrow 12 x=72 \Leftrightarrow x=6
\end{aligned}
$$

Hence speed $=6 \mathrm{~km} / \mathrm{hr}=\left\{\begin{array}{c}6 * \underline{5} \\ 18\end{array}\right\} \mathrm{m} / \mathrm{sec}=\underset{3}{5} \mathrm{~m} / \mathrm{sec}=1 \underline{2} \underline{3}$
Ex. 5.Peter can cover a certain distance in 1 hr .24 min . by covering two-third of the distance at 4 kmph and the rest at 5 kmph . Find the total distance.
Sol. Let the total distance be x km . Then,

$$
\frac{\frac{2}{3} x}{4}+\frac{\frac{1}{3} x}{5}=\frac{7}{5} \Leftrightarrow \frac{x}{6}+\frac{x}{15}=\frac{7}{5} \Leftrightarrow 7 x=42 \Leftrightarrow x=6
$$

Ex. 6.A man traveled from the village to the post-office at the rate of 25 kmph and walked back at the rate of 4 kmph . If the whole journey took 5 hours 48 minutes, find the distance of the post-office from the village.
Sol. Average speed $\left.=\frac{\{2 \mathrm{xy}}{\mathrm{x}+\mathrm{y}}\right\} \mathrm{km} / \mathrm{hr}=\left\{\frac{2 * 25 * 4}{25+4}\right\} \mathrm{km} / \mathrm{hr} \frac{200}{29} \mathrm{~km} / \mathrm{hr}$
Distance traveled in 5 hours 48 minutes i.e., $5 \underline{4} \mathrm{hrs} .=\{\underline{200} * \underline{29}\} \mathrm{km}=40$ km

Distance of the post-office from the village $=\{\underline{2} \underline{40}\}$| 29 |
| :--- |
| $=$ |
| $=$ |

Ex. 7.An aeroplane files along the four sides of a square at the speeds of 200,400,600 and $800 \mathrm{~km} / \mathrm{hr}$.Find the average speed of the plane around the field.
Sol. :
Let each side of the square be x km and let the average speed of the plane around the field by y km per hour then, $x / 200+x / 400+x / 600+x / 800=4 x / y \Leftrightarrow 25 x / 2500 \Leftrightarrow 4 x / y \Leftrightarrow y=(2400 * 4 / 25)=384$
hence average speed $=384 \mathrm{~km} / \mathrm{hr}$
Ex. 8. Walking at $\underline{5}$ of its usual speed, a train is 10 minutes too late. Find its usual time to cover the journey.

7
Sol. $:$ New speed $=5 / 6$ of the usual speed

New time taken $=6 / 5$ of the usual time
So,($6 / 5$ of the usual time)-(usual time) $=10$ minutes.
$=>1 / 5$ of the usual time $=10$ minutes.
\Rightarrow usual time $=10$ minutes
Ex. 9.If a man walks at the rate of 5 kmph , he misses a train by 7 minutes. However, if he walks at the rate of $\mathbf{6} \mathbf{k m p h}$, he reaches the station 5 minutes before the arrival of the train. Find the distance covered by him to reach the station.
Sol. Let the required distance be x km
Difference in the time taken at two speeds $=1 \mathrm{~min}=1 / 2 \mathrm{hr}$
Hence $x / 5-x / 6=1 / 5<=>6 x-5 x=6$
$\Leftrightarrow x=6$
Hence, the required distance is 6 km
Ex. 10. A and B are two stations 390 km apart. A train starts from A at 10 a.m. and travels towards B at 65 kmph . Another train starts from B at 11 a.m. and travels towards A at 35 kmph . At what time do they meet?

Sol. Suppose they meet x hours after 10 a.m. Then,
(Distance moved by first in xhrs$)+[$ Distance moved by second in $(x-1)$ $\mathrm{hrs}]=390$.
$65 \mathrm{x}+35(\mathrm{x}-1)=390 \Rightarrow 100 \mathrm{x}=425 \Rightarrow \mathrm{x}=17 / 4$

So, they meet 4 hrs. 15 min . after 10 a.m i.e., at 2.15 p.m.
Ex. 11. A goods train leaves a station at a certain time and at a fixed speed. After ${ }^{\wedge} h o u r s$, an express train leaves the same station and moves in the same direction at a uniform speed of $\mathbf{9 0} \mathbf{k m p h}$. This train catches up the goods train in $\mathbf{4}$ hours. Find the speed of the goods train.

Sol. Let the speed of the goods train be x kmph.
Distance covered by goods train in 10 hours= Distance covered by express train in 4 hours

$$
10 \mathrm{x}=4 \mathrm{x} 90 \text { or } \mathrm{x}=36 .
$$

So, speed of goods train $=36 \mathrm{kmph}$.
Ex. 12. A thief is spotted by a policeman from a distance of 100 metres. When the policeman starts the chase, the thief also starts running. If the speed of the thief be $8 \mathrm{~km} / \mathrm{hr}$ and that of the policeman $10 \mathrm{~km} / \mathrm{hr}$, how far the thief will have run before he is overtaken?

Sol. Relative speed of the policeman $=(10-8) \mathrm{km} / \mathrm{hr}=2 \mathrm{~km} / \mathrm{hr}$.
Time taken by police man to cover $100 \mathrm{~m} \quad\left(\frac{100}{1000} \times \frac{1}{2}\right) \mathrm{hr}=\frac{1 \mathrm{hr}}{20}$.
In $\frac{1}{20} \mathrm{hrs}$, the thief covers a distance of $8 \times \frac{1}{20} \mathrm{~km}=\frac{2}{5} \mathrm{~km}=400 \mathrm{~m}$

Ex.13. I walk a certain distance and ride back taking a total time of 37 minutes. I could walk both ways in 55 minutes. How long would it take me to ride both ways?

Sol. Let the distance be xkm . Then,
$($ Time taken to walk $x \mathrm{~km})+($ time taken to ride x km$)=37 \mathrm{~min}$.
$($ Time taken to walk 2 xkm$)+($ time taken to ride 2 xkm$)=74 \mathrm{~min}$.
But, the time taken to walk $2 \mathrm{x} \mathrm{km}=55 \mathrm{~min}$.
Time taken to ride $2 x \mathrm{~km}=(74-55) \mathrm{min}=19 \mathrm{~min}$.

